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Rigid body physics 



Game Physics 

• Most simple instance of a physics system 

– Each object (body) is a particle 

– Each particle have forces acting upon it 

• Constant, e.g. gravity 

• Position dependent, e.g. force fields 

• Velocity dependent, e.g. drag forces 

• Event based, e.g. collision forces 

• Restrictive, e.g. joint constraint 

– So net force is a function 𝐹(𝑝𝑜, 𝑣, 𝑎,𝑚, 𝑡, … ) 
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Particle system 



Game Physics 

• Use the equations of motion to find the position of 

each particle at each frame 

• At the start of each frame 

– Sum up all of the forces for each particle 

– From these forces compute the acceleration 

– Integrate into velocity and position 
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Particle system 



Game Physics 

• The mass is the measure of the amount of matter 

in the volume of an object 

𝑚 =  𝜌 𝑑𝑉
 

𝑉

 

    where 𝜌 is the density at each location in the 

    object volume 𝑉 

• We can also state that the mass is a measure of 

an object’s resistance to motion or a change of 

motion 

– the larger mass, the more difficult it is to set in or change 

the motion of an object 
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Mass 



Game Physics 

• For a 3D object, the mass is therefore the integral 

over its volume along the three dimensions 

𝑚 =    𝜌(𝑥, 𝑦, 𝑧) 𝑑𝑥 𝑑𝑦 𝑑𝑧 

• For uniform density objects (rigid bodies usually 

are), the mass is then 

𝑚 = 𝜌 ∗ 𝑉 

    where 𝜌 is the density of the object and 𝑉 its 

    volume 
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Mass 



Game Physics 

• The center of mass (COM) is the point at which all 

the mass can be considered to be ‘concentrated’ 

– obtained from the first moment, i.e. mass times distance 

– point of ‘balance’ of the object 

– if uniform density, COM is also the centroid 

7 

Center of mass 

COM 



Game Physics 

• Coordinate of the COM 
 

𝐶𝑂𝑀 =
1

𝑚
 𝜌 𝑝 ∗ 𝑝 𝑑𝑉
 

𝑉

 

   where 𝑝 is the position at each location in 𝑉 

 

• For a body made of particles 

𝐶𝑂𝑀 =
1

𝑚
 𝑚𝑖𝑝𝑖

𝑛

𝑖=1

 

   where 𝑚𝑖 is the mass of each particle 𝑝𝑖 in the  
   body 
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Center of mass 



Game Physics 

• Example for a body made of two particles in 1D 

 

 

 

 

 

 

𝑥𝐶𝑂𝑀 =
𝑚1𝑥1 +𝑚2𝑥2
𝑚1 +𝑚2
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Center of mass 

COM 
𝒎𝟏 

𝒎𝟐 

𝒙𝟐 

𝒙𝟏 

𝒙𝑪𝑶𝑴 



Game Physics 

• Quite easy to determine for primitive shapes 

 

 

 

• But what about complex surface based models? 
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Center of mass 
4.1 



Game Physics 

• In rigid body physics, the motion of an object is not 

summarized to the translational motion of its 

center of mass 

• A rigid body is considered as a system of particles 

remaining at fixed distances from each other with 

no relative translation or rotation among them 
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Rigid body 



Game Physics 

• A force can be applied anywhere on the object, 

producing also a rotational motion 
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Rigid body 

𝑭 

𝑪𝑶𝑴 

𝒂 

𝜶 



Game Physics 

• The moment of inertia of a rigid body is a measure 

of how much the mass of the body is spread out 

• It is a measure of the rigid body's ability to resist 

change in rotational motion 

• It is defined with respect to a specific rotation axis 

• We define 𝑟 as the distance between any point in 

the object and the axis of rotation 
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Moment of inertia 



Game Physics 

• For a mass point: 

    𝐼 = 𝑚 ∗ 𝑟2 

 

• For a collection of mass points: 

    𝐼 =  𝑚𝑖𝑟𝑖
2

𝑖  

 

• For a continuous mass distribution: 

    𝐼 =  𝑟2
𝑀

𝑑𝑚 
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Moment of inertia 

𝑟 
𝑚 

𝑟1 
𝑚1 

𝑟2 
𝑚2 

𝑟3 𝑚3 

𝑟 𝑑𝑚 



Game Physics 

• Remember that the angular momentum is 
 

𝐿 = 𝐼 ∗ 𝜔 = 𝑟 × 𝑝 = 𝑟 ×𝑚𝑣 = 𝑚(𝑟 × (𝜔 × 𝑟)) 

 

• If we look at the set of all elementary mass 

elements in the body, we have 
 

𝐿 =  𝑟 × 𝜔 × 𝑟  𝑑𝑚
 

𝑀
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Momentum and inertia 



Game Physics 

• Let’s define 𝑟 =
𝑥
𝑦
𝑧

 and 𝜔 =

𝜔𝑥
𝜔𝑦
𝜔𝑧

 

• So we have 
 

𝐿 =  

𝑦2 + 𝑧2 𝜔𝑥 − 𝑥𝑦𝜔𝑦 − 𝑥𝑧𝜔𝑧

−𝑦𝑥𝜔𝑥 + 𝑧2 + 𝑥2 𝜔𝑦 − 𝑦𝑧𝜔𝑧

−𝑧𝑥𝜔𝑥 − 𝑧𝑦𝜔𝑦 + (𝑥2 + 𝑦2)𝜔𝑧

 𝑑𝑚 
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Momentum and inertia 



Game Physics 

• Let’s define 

𝐼𝑥𝑥 =  𝑦2 + 𝑧2 𝑑𝑚 

𝐼𝑦𝑦 =  𝑧2 + 𝑥2 𝑑𝑚 

𝐼𝑧𝑧 =  𝑥2 + 𝑦2 𝑑𝑚 
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Momentum and inertia 

𝐼𝑥𝑦 = 𝐼𝑦𝑥 =  𝑥𝑦 𝑑𝑚 

𝐼𝑥𝑧 = 𝐼𝑧𝑥 =  𝑥𝑧 𝑑𝑚 

𝐼𝑦𝑧 = 𝐼𝑧𝑦 =  𝑦𝑧 𝑑𝑚 



Game Physics 

• We then have the angular momentum 

 
 

𝐿 =

𝐼𝑥𝑥 −𝐼𝑥𝑦 −𝐼𝑥𝑧
−𝐼𝑦𝑥 𝐼𝑦𝑦 −𝐼𝑦𝑧
−𝐼𝑧𝑥 −𝐼𝑧𝑦 𝐼𝑧𝑧

𝜔𝑥
𝜔𝑦
𝜔𝑧

= 𝐼 ∗ 𝜔 
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Momentum and inertia 



Game Physics 

• Finally the inertia can be expressed as the matrix 

𝐼 =

 𝑦2 + 𝑧2 𝑑𝑚 − 𝑥𝑦 𝑑𝑚 − 𝑥𝑧 𝑑𝑚

− 𝑥𝑦 𝑑𝑚  𝑧2 + 𝑥2 𝑑𝑚 − 𝑦𝑧 𝑑𝑚

− 𝑥𝑧 𝑑𝑚 − 𝑦𝑧 𝑑𝑚  𝑥2 + 𝑦2 𝑑𝑚

 

• The diagonal elements are called the (principal) 

moment of inertia 

• The off-diagonal elements are called products of 

inertia 
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Inertia 



Game Physics 

• Equivalently, we can define the inertia as 

𝐼 =  𝑟2 𝑑𝑚

 

𝑀

=  𝜌 ∗ 𝑟2 𝑑𝑉

 

𝑉

 

𝐼 =  𝜌 𝑥, 𝑦, 𝑧

𝑦2 + 𝑧2 −𝑥𝑦 −𝑥𝑧

−𝑥𝑦 𝑧2 + 𝑥2 −𝑦𝑧

−𝑥𝑧 −𝑦𝑧 𝑥2 + 𝑦2
𝑑𝑥 𝑑𝑦 𝑑𝑧

 

𝑉

 

 

– you can notice that the diagonal elements are the 

distances to the respective principal axis 

– and the non-diagonal elements the products of the 

perpendicular distances to the respective planes 
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Inertia 



Game Physics 

• For primitive shapes, the inertia can be expressed 

with the parameters of the shape 

 

• Illustration on a solid sphere 

– we can calculate the inertia of the 

sphere by integration of the moment 

of inertia of thin discs along one 

axis (e.g. 𝑧) 

– the surface of the sphere is defined 

by 𝑥2 + 𝑦2 + 𝑧2 = 𝑅2 
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Inertia of primitive shapes 



Game Physics 

• Illustration on a solid sphere 

– the distance to the axis of rotation is the radius of the 

disc at the cross section along 𝑧: 𝑟2 = 𝑥2 + 𝑦2 = 𝑅2 − 𝑧2 

– the inertia is given by the sum of moments of inertia of 

small cylinders of inertia 𝐼 =
𝑟2𝑚

2
 along the z-axis: 

𝑑𝐼 =
1

2
𝑟2𝑑𝑚 =

1

2
𝑟2𝜌𝑑𝑉 =

1

2
𝑟2𝜌𝜋𝑟2𝑑𝑧 

– so we have 𝐼 =
1

2
𝜌𝜋  𝑟4𝑑𝑧

𝑅

−𝑅
=

1

2
𝜌𝜋  𝑅2 − 𝑧2 2𝑑𝑧

𝑅

−𝑅
=

1

2
𝜌𝜋 𝑅4𝑧 − 2𝑅2 𝑧3 3 + 𝑧5 5 −𝑅

𝑅 = 𝜌𝜋 1 − 2 3 + 1 5 𝑅5 

– as 𝑚 = 𝜌 4 3 𝜋𝑅3, we finally have 𝐼 =
2

5
𝑚𝑅2 
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Inertia of primitive shapes 



Game Physics 

• Solid sphere, radius 𝑟 and mass 𝑚 

 

 

 

 

• Hollow sphere, radius 𝑟 and mass 𝑚 
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Inertia of primitive shapes 

𝐼 =

2

5
𝑚𝑟2 0 0

0
2

5
𝑚𝑟2 0

0 0
2

5
𝑚𝑟2

 

𝐼 =

2

3
𝑚𝑟2 0 0

0
2

3
𝑚𝑟2 0

0 0
2

3
𝑚𝑟2

 

x 
z 

y 



Game Physics 

• Solid ellipsoid, semi-axes 𝑎, 𝑏, 𝑐 and mass 𝑚 

 

 

 

 

• Solid box, width 𝑤, height ℎ, depth 𝑑 and mass 𝑚 
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Inertia of primitive shapes 

𝐼 =

1

5
𝑚(𝑏2+𝑐2) 0 0

0
1

5
𝑚(𝑎2+𝑐2) 0

0 0
1

5
𝑚(𝑎2+𝑏2)

 

𝐼 =

1

12
𝑚(ℎ2+𝑑2) 0 0

0
1

12
𝑚(𝑤2+𝑑2) 0

0 0
1

12
𝑚(𝑤2+ℎ2)

 

x 
z 

y 

w 
d 

h 



Game Physics 

• Solid cylinder, radius 𝑟, height ℎ and mass 𝑚 

 

 

 

 

• Hollow cylinder, radius 𝑟, height ℎ and mass 𝑚 
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Inertia of primitive shapes 

𝐼 =

1

12
𝑚(3𝑟2+ℎ2) 0 0

0
1

12
𝑚(3𝑟2+ℎ2) 0

0 0
1

2
𝑚𝑟2

 

𝐼 =

1

12
𝑚(6𝑟2+ℎ2) 0 0

0
1

12
𝑚(6𝑟2+ℎ2) 0

0 0 𝑚𝑟2

 

x 

z 

y 

h 

h 

4.2-4.3 



Game Physics 

• But the object does not necessarily rotate around 

the center of mass 

• To account for it, we need to modify the inertia 

matrix by applying the parallel axis theorem 
 

𝐼𝑣 = 𝐼𝐶𝑂𝑀 +𝑚𝑟2 
 

where 𝐼𝑣 is the inertia of the object about any axis 𝑣, 

𝐼𝐶𝑂𝑀 the inertia about an axis through the COM, 𝑚 is 

the mass of the object and 𝑟 is the distance between 

the axes 
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Parallel axis theorem 



Game Physics 

• So the elements of our inertia matrix become 
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Parallel axis theorem 

𝐼𝑥𝑥 =  𝑦2 + 𝑧2 𝑑𝑚 +𝑚𝑑𝑥
2
 

𝐼𝑦𝑦 =  𝑧2 + 𝑥2 𝑑𝑚 +𝑚𝑑𝑦
2
 

𝐼𝑧𝑧 =  𝑥2 + 𝑦2 𝑑𝑚 +𝑚𝑑𝑧
2
 

 

 

𝐼𝑥𝑦 =  𝑥𝑦 𝑑𝑚 +𝑚𝑑𝑥𝑑𝑦 

𝐼𝑥𝑧 =  𝑥𝑧 𝑑𝑚 +𝑚𝑑𝑥𝑑𝑧 

𝐼𝑦𝑧 =  𝑦𝑧 𝑑𝑚 +𝑚𝑑𝑦𝑑𝑧 

4.4 



Game Physics 

• For a planar 2D object, the moment of inertia 

about an axis perpendicular to the plane is the 

sum of the moments of inertia of two perpendicular 

axes through the same point in the plane of the 

object 
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Perpendicular axis theorem 

𝑥 

𝑦 𝑧 

𝐼𝑧 = 𝐼𝑥 + 𝐼𝑦  
for any planar object 

𝑥 

𝑦 𝑧 

𝐼𝑧 = 2𝐼𝑥 = 2𝐼𝑦  
for symmetrical objects 



Game Physics 

• Do not forget that the inertia tensor is constant in 

body space but varies in world space 

• So at each simulation frame, the inertia tensor in 

world space is calculated by 

𝐼𝑤𝑜𝑟𝑙𝑑 𝑡 = 𝑅 𝑡 ∗ 𝐼𝑏𝑜𝑑𝑦 𝑡 ∗ 𝑅(𝑡)𝑇 

    where 𝑅 is the rotation matrix describing the 

    orientation of the body in the world space 
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Reference frame 



Game Physics 

• When an object consists of multiple primitive 

shapes 

1. Calculate the individual inertia of each shape 

2. Use parallel axis theorem to transform to inertia about 

an axis through the COM of the object 

3. Add the inertia matrices together 
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Complex objects 
4.5 



Game Physics 

• Remember that the object moves linearly as the 

COM moves 

• Rotation add to the movement for points on the 

object 

• Total motion of a point on the object is the sum of 

the two motions 
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Position on an object 

𝑭 

4.6-4.7 



Game Physics 

• Sometimes a rigid body is not free to move around 

‘on its own’, we want to constrain its movement 

– wheels on a chair 

– human body parts 

– trigger of a gun 

– opening door 

– actually almost anything you can think of in a game... 
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Motion constraint 



Game Physics 

• To describe how a body can move in space you 

have to specify its degrees of freedom (DOF) 

– Translational 

– Rotational 
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Degree of freedom 



Game Physics 

• A kinematic pair is a connection between two 

bodies that imposes constraints on their relative 

movement 

– Lower pair, constraint on a point, line or plane 

• Revolute pair, or hinged joint: 1 rotational DOF 

• Prismatic joint, or slider: 1 translational DOF 

• Screw pair: 1 coordinated rotation/translation DOF 

• Cylindrical pair: 1 translational + 1 rotational DOF 

• Spherical pair, or ball-and-socket joint: 3 rotational DOF 

• Planar pair: 3 translational DOF 

– Higher pair, constraint on a curve or surface 

34 

Kinematic pair 



Game Physics 

• A good enough approximation for game 

applications is to assume that the energy of the 

components of the net force acting on constrained 

degrees of freedom is converted into heat and 

sound (𝐸𝑜) 

• Therefore you can project the net force on the 

unconstrained degrees of freedom and forget 

about the other ones 

• Not true for soft bodies 
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Integrate constraints 



Game Physics 

• As solving a constraint for a body may influence 

the solving for another one, we need an iterative 

process 
– while (!done) { 

        for all constraints c do solve c; 

    } 

– Convergence is usually ensured by reaching either a 

maximal amount of iterations or a minimal change in 

every constraints 
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Integrate constraints 



Game Physics 

• Sequential impulses (SI) is a popular example of 

such iterative solver 

– It applies impulses at each constraint to correct velocity 

– SI is quite stable and converges to a global solution 

• Why impulses? 

– Easier to deal with friction and collision 

– Work with velocity rather than acceleration 

– Given the time step, impulse and force are 

interchangeable 

– But velocity constraints not precise, might produce 

position drift, breaking the constraint 
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Sequential impulses 



Game Physics 38 

Sequential impulses 

Step 1 
 

Integrate applied forces, yielding to tentative velocities 

Step 2 
 

Apply impulses sequentially for all constraints to correct 

the velocity errors 

Step 3 
 

Use the new velocities to update the positions 



Game Physics 

• Instead of adding impulses to enforce constraints, 

you can just not produce any force / torque along a 

specific DOF 

• This is referred to as reduced coordinate 

simulation while impulse-based is a full coordinate 

simulation 

• It allows for faster simulation (as less calculations 

are performed) and less tuning (notably of the 

magnitude of the impulses) 

• But more vulnerable to numerical instability and 

might be difficult to parameterize the DOF system 
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Coordinate simulation 



Game Physics 

• The Featherstone’s Articulated Body Method 
(FABM) is an example of reduced coordinate 
constraint representation 

• It computes the DOF accelerations given the 
articulated body current state and any external 
forces and torques 
– made of three loops over the articulated body, so 𝑂(𝑛) 

– relies on the linear relation between the acceleration 
and the force 

𝑓 + 𝐹𝑒𝑥𝑡 = 𝐼 ∗ 𝑎 + 𝑝 

    where 𝑓 is the test force, 𝐹𝑒𝑥𝑡 are the external forces 
(e.g. gravity), 𝐼 the inertia of the articulated body, 𝑎 the 
DOF acceleration (unknown) and 𝑝 the bias force 
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Featherstone’s Algorithm 



Game Physics 41 

Featherstone’s Algorithm 

Algorithm FABM (𝑞, 𝑞 , 𝐹𝑒𝑥𝑡, 𝜏) // 𝑞 is the state of the body (DOF values) 
𝑣0 ← 0  
for 𝑖 ← 1 to 𝑛       // compute velocities for all links 

𝑗 ← 𝑖 − 1         // 𝑗 is the parent of link 𝑖 

𝑣𝑖 ← 𝑅𝑖
𝑗
𝑣𝑗 + 𝑠𝑖𝑞 𝑖    // 𝑅𝑖

𝑗
 is the transformation from local system 𝑗 to 𝑖, 𝑠𝑖 is the joint axis 

𝑝𝑖 ← 𝑣𝑖 × 𝐼𝑖𝑣𝑖 − 𝐹𝑒𝑥𝑡,𝑖  
𝑐𝑖 ← 𝑣𝑖 × 𝑠𝑖𝑞 𝑖  

for 𝑖 ← 𝑛 to 1         // compute inertia and bias force 
𝐼𝑖
𝑎𝑐𝑐𝑢 ← 𝐼𝑖        // start accumulation of inertia 
𝑝𝑖
𝑎𝑐𝑐𝑢 ← 𝑝𝑖        // start accumulation of bias force 
for 𝑗 ← 1 to numChildren(𝑖) // for each child of 𝑖 of index 𝑗 

𝐼𝑖
𝑎𝑐𝑐𝑢 ← 𝐼𝑖

𝑎𝑐𝑐𝑢 + 𝑅𝑖
𝑗
𝐼𝑗
𝑎𝑐𝑐𝑢 −

ℎ𝑗ℎ𝑗
𝑇

𝑑𝑗
𝑅𝑗
𝑖
  

𝑝𝑖
𝑎𝑐𝑐𝑢 ← 𝐼𝑖

𝑎𝑐𝑐𝑢 + 𝑅𝑖
𝑗
𝑝𝑗
𝑎𝑐𝑐𝑢 + 𝐼𝑗

𝑎𝑐𝑐𝑢𝑐𝑗 +
𝑢𝑗

𝑑𝑗
ℎ𝑗   

ℎ𝑖 ← 𝐼𝑖
𝑎𝑐𝑐𝑢𝑠𝑖  

𝑑𝑖 ← 𝑠𝑖
𝑇ℎ𝑖  

𝑢𝑖 ← 𝜏𝑖 − ℎ𝑖
𝑇𝑐𝑖 − 𝑠𝑖

𝑇𝑝𝑖
𝑎𝑐𝑐𝑢

  

𝑎0 ← 0  
for 𝑖 ← 1 to 𝑛       // compute acceleration for all joints 

𝑗 ← 𝑖 − 1         // 𝑗 is the parent of link 𝑖 

𝑞 𝑖 ←
𝑢𝑖−ℎ𝑖

𝑇𝑅𝑖
𝑗
𝑎𝑗

𝑑𝑖
  

𝑎𝑖 ← 𝑅𝑖
𝑗
𝑎𝑗 + 𝑐𝑖 + 𝑠𝑖𝑞 𝑖  



Game Physics 

• Imagine you finally have rigid bodies moving and 

constrained correctly according to the forces you 

apply 

• To let them ‘live’ on their own will be fine for 

‘passive’ objects 

– projectile, furniture, environmental objects etc. 

• But not for living beings as they will just fall onto 

the ground at the beginning of the game 
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Motion control 



Game Physics 

• In current games, animated bodies are controlled 

using a mix of kinematics and dynamics 

• Kinematics to replay and slightly adapt pre-

recorded motions 

• Dynamics to passively animate objects reacting to 

external forces (e.g. human ragdoll) 

• A real-time controller switches from one to the 

other according to events, forces, poses etc. 
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Motion control 



Game Physics 

• But imagine that you want to actively actuate rigid 

bodies using forces and torques 

– not yet in games but will probably in a near future 

• You need actuators (to generate motion from 

within the bodies) 

– Joint torques 

– External forces 

– Virtual forces 

– Muscle forces 

– contractile elements activated by the brain ... up to the 

source of motion! Where do we stop for a game? 
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Motion control 



Game Physics 

• Most straightforward actuation model 

• Joint torques directly generate torques for each 

actuated DOF 

• We assume that there is a ‘fake’ motor at the 

location of the joint that can produce torque 

• For example if you want to increase a joint angle 

you will generate a positive torque and add it to the 

solving of the laws of motion 

• Very useful to track pre-recorded motions or any 

other error-based poses (e.g. balance pose) 

– Amount of applied torque depends directly on the error 
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Joint torques 



Game Physics 

• We can try to control the motion by applying 

external forces on the right object at the right local 

position for the right amount of time 

– Difficult to produce realistic motions 

– Do not really fit the real world neither as motion 

originates from inside 

• Similar to a puppetry technique 

– but need a master knowing how to control the system 

• But very useful for the control of the global 

orientation and position of a complex system (root 

node) 
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External forces 



Game Physics 

• Not really an actuation method 

• Emulate the effect of applying an external force by 

computing the equivalent joint torque 

• Use the relation between joint rotation and position 

where a force is applied (Jacobian of the system) 
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Virtual forces 



Game Physics 

• Motion actually comes from the contraction of 

muscles 

– they also produce torques at joints, but not in a ‘fake 

motor’ way 

• By adding their position and physical behavior to 

the model, we can actuate rigid bodies with muscle 

activation 

– commonly used in biomechanics / motion analysis 

– the muscle model is usually a combination of two non-

linear springs and one damper 
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Muscle forces 



Game Physics 

• Read the survey paper ‘Interactive Character 

Animation Using Simulated Physics: A State-of-

the-Art Review’ 

• Joint-space motion control 

– defines and tracks kinematics target 

• Stimulus-response network control 

– genetically evolves controllers according to objectives 

• Constrained dynamics optimization control 

– finds optimal torques through online optimization 
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Controller design 



Game Physics 

• If your goal is to actuate a joint by feeding targets 

to track over time, then updating the necessary 

torque is quite easy 

• You can use a Proportional Derivative (PD) 

controller 

– it can be used to compute joint torques linearly 

proportional to the difference between the current state 

and the target state 

– it will be based on joint orientation and angular velocity 
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PD controller 



Game Physics 

 
𝜏 = 𝑘𝑝 𝜃𝑑 − 𝜃 + 𝑘𝑣 𝜃 𝑑 − 𝜃  

 

where 𝜏 is the generated joint torque, 𝜃𝑑 and 𝜃 the 

desired and current joint angle, 𝜃 𝑑 and 𝜃  the desired 

and current joint angular velocity 

 

• 𝑘𝑝 and 𝑘𝑣 are the controller gains, they regulate 

how responsive the controller is to deviations in 

orientation and angular velocity, respectively 
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PD controller 



Game Physics 

• A difficult and time-consuming task for the motion 

controller designer is to define the gain values 

– too high 𝑘𝑝 will produce stiff unresponsive motions 

– too low 𝑘𝑝 will not track correctly the target 

– too high 𝑘𝑣 will converge too slowly to the target 

– too low 𝑘𝑣 will produce oscillations 

• Expect to spend time fine tuning gains 
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PD controller 



End of 

Rigid body physics 

 

 Next 

Numerical Integration 


